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A two-dimensional dynamic model of an investment process, which describes the change in the volume of production and 
the amount of accumulated investments, is considered. The amount of current investment serves as a control. A utility function 
in the form of an integral over a semi-infinite interval of the logarithm of the consumption index with a discounting factor is 
chosen as the criterion. The Pontryagin maximum principle is used to solve the problem. The first integral is found for the system 
of initial and associated equations; after which the system is reduced to a third-order system with a block structure. The equilibrium 
position of the reduced system is found. It is proved that it is a saddle-point. The trajectories in the neighbourhood of the 
equilibrium position are investigated qualitatively and the quasi-optimal control is constructed in the form of a synthesis. A 
numerical procedure is proposed for constructing the quasi-optimal control. An estimate of the calculation of the maximum 
value of the criterion is obtained. A comparison of the data obtained using the proposed model with aggregated data for the 
Japanese economy for the years from 1960 to 1992 is presented. 0 2001 Elsevier Science Ltd. All rights reserved. 

The dynamic model of an investment process considered here was proposed earlier in [I]. The model 
takes account of two fundamental trends: on the one hand, technology (accumulated annual investments) 
stimulates a production growth and, on the other hand, current investments consume part of the 
resources from the manufacturing sector. The problem involves finding the optimal investment which 
permits the maintenance of a balance between these two trends, the first of which ensures the effect 
of economic growth and the second is a risk factor. The effectiveness of the investments is characterized 
by an integral utility function which depends on the basic econometric indices: production, technology 
and current investments in the development of technology. 

The problem under consideration is a classical problem of optimal economic growth [2-51. The theory 
previously developed in [4] is used in analysing the model. A generalized model of economic growth 
for countries able to import technology has been investigated in [6]. 

Unlike in the case of the above-mentioned models, the optimal dynamics for growth in production 
are investigated as a function of current investments in the deveIopment of technology. Note that the 
effect of accumulated technology on growth in production has been studied previously in [7]. Results 
obtained earlier in [3, 8, 91 have also been used in setting up the model. 

In this paper, a numerical algorithm is derived for finding the optimal trajectories of the model with 
any accuracy specified in advance. 

1. DESCRIPTION OF THE MODEL 

A mathematical model of the growth in production and technology [l] is considered which is described 
by the system of differential equations 

(1-l) 

T(r) = r(f - m) - oT( f) 

I-O (1.2) 

Here y (t) is the total yearly output (the overall volume of production of an industy or the production 
of an individual branch such as, for example, the processing industry), T(t) is the technology which has 
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been accumulated in the industry (it can be measured in monetary units since technology can be bought 
and sold), r(t) is the current annual amount of investment in the development of technology,fi is the 
endogenic rate of growth in production (the rate of growth of the industry without the accumulation 
of new technologies), f2( r(t)!~(t))~ is the increment in the rate of growth of production due to the 
accumulation of new technologies, gr(t)ly(t) is a factor for the slowdown in the rate of growth of 
production due to the withdrawal of credits from the production sector, m is the aggregated time of 
the commercialization of the developments and o is the coefficient of “obsolescence” of the accumulated 
technologies. 

Differential equation (1.2) is the continuous analogue of the finite-difference formula [lo] 

T(r)=r(t-m)+(l-o)T(t-1) 

In a simplified analysis, the parameters o and m can be neglected and equated to zero. In this case, it 
can be assumed that 

f(t) = r(r) (1.3) 

The functionsfi(t),f$), g(t) can be expressed in terms of fundamental macroeconomic quantities [l]. 
We shall henceforth assume that the quantitiesfi,fz, g are constant. 

The production y(t) and the technology T(t) are the fundamental variables of the model. The current 
investments r(t) in the development of technology are not fured in advance. It is required to find the 
optimal investment law r(r) as a function of time. The utility function Uto, represented in the form of 
an integral with a discount coefficient p [2-4] 

l+& = Te+(f-‘o) In D(t)& (1.4) 
10 

is adopted as the criterion of optimality. Here, D(r) is consumption index, to is the current time, to is 
the initial instant of time, and the infinite upper limit of the integral denotes that a long-term 
development perspective is being considered. 

We will specify the consumption index in the form [4] 

( 1 
I/a 

D= D(r)= jxa(j)dj , n = n(r) (1.5) 
0 

where x(j) is the amount of invented industrial goods of typej, it is the number of available (invented) 
types of industrial goods, 0 c a c 1 is a constant elasticity parameter and l/(1 - a) > 1 is a constant 
for the elasticity of substitution between two different types of goods. 

We will now make the simplifying assumption that the quantities x(j) are identical for the different 
indicesj, that is 

x(j) = y/n, y = y(t), n = n(r) (1.6) 

and that the number of invented products n depends on the accumulated investments T and the current 
change in technology r as follows 

n = n(r) = be“‘TPi rpz, T = T(r), r = r(r) (1.7) 

Relations (1.6) and (1.7) show that n depends on the current activity of the investors, which is 
characterized by the value of r, and on the amount of investment which has been accumulated in the 
past in the development of the technology T. Moreover, an innovation process n has a tendency to fade 
out, which can be expressed by a factor e”‘. 

Combining Eqs (1.4)-( 1.7) we obtain the following expression for the utility function 

Wto = Uro + A7e-P(‘-fo)(xt + In b)dr 
‘0 

Here 
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q. = p~-)(l” y(r) + a, In T(t) + a2 In r(t))& 
'0 

a, =A&, a2 =A&, A=lla-I 

(1.8) 

The second term in the expression for the utility function II’,, is independent of the basic variables 
of the modely, T and r, and, consequently, one can henceforth consider the utility function U,, instead 
of the utility function WtO, bearing in mind that 

W’, =U,o +Ap-‘[x(ra+p-‘)+Inb] 

The structure of the utility function Ura (1.8) shows that investors (the government or financial groups) 
are interested in growth in productiony and, at the same time, in growth in the volume of accumulated 
technology T and the current change in its r value (the invention of new goods, etc.) 

2. APPLICATION OF THE MAXIMUM PRINCIPLE 

The control problem consists of finding the level of growth of technology r” = r’(t) in the class of 
piecewise-continuous functions r(t) to which the optimal production y” = ye(t) and the optimal 
accumulation of technology To = To(t), that satisfy Eqs (1.1) and (1.3) and maximize utility function 
(1.8), correspond. 

Problem (Ll), (1.3), (1.8) is a classical problem in the theory of optimal control. The Pontryagin 
maximum principle [ll] can be used to solve it. Applications of this optimal@ principle to problems 
of economic growth have been considered previously [2-4]. 

We set up the Hamiltonian of problem (l.l), (1.3), (1.8) 

H(.y,T,r,W,,W2)=lny+a, lnT+a?lnr+Wl(lly+fiT’y’-y --gr)+Wzr (2.1) 

Calculating the maximum of Hamiltonian (2.1) with respect to the parameter r, we find that the 
maximum value is attained at the optimal rate of growth of the technology 

r” = a;?(gv, - w*F’ (2.2) 

The dynamics of the associated variables wl, w2 are described by the system of equations 

l$, =py1 -z=pv, -+u)w,fiT’;-w,r; 

aH 
w2 = PW2 - z = PW2 -aI $ - YvIf2Y’-y y& 

Combining Eqs (1.1) (1.3) (2.2) and (2.3) we obtain the closed system 

(2.3) 

(2.4) 

I w2=p_a,_ 
Y 

w2 VJzT 

It is required to find the solution of system (2.4) which satisfies the transversality condition of the 
maximum principle 

lim eeP’z(t) = 0 
I-+W (2.5) 

where the function z is defined by the relation 
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Z = ~l/ly + ~2 T (2.6) 

The first integral (3.1) is found for system (2.4) in Section 3, and, because of this, an equivalent reduced 
system with separable variables - x l  = y / T ,  x2 = ~/lY in one block and x3 = 1 / T  in the other, is obtained. 
Conditions are presented, under which a unique equilibrium position 

. t0 0 0 0 = ( x , , x 2 , x 3 ) ,  x o  > 0, x ° > 0,  x ° = 0 

exists in the reduced system. 
An estimate of the eigenvalues and eigenvectors of the linearized system is then produced and it is 

shown that the positionx ° is a saddle point. In this case, trajectories of the reduced system exist which 
bring it to equilibrium. Consequently, a solution of system (2.4) exists which satisfies the transversality 
condition (2.5), (2.6). 

In the general case, the optimal control r ° has a complex structure. A quasi-optimal synthesis is 
proposed in Section 5 which is applicable in a small neighbourhood of the position x °, x ° and ensures 
the required behaviour of system (1.1), (1.3) (the same as under the optimal conditions) 

lim y ( t ) l  T ( t )  = x ° ,  lim l I T ( t )  = x ° 
t " -~  ~ t " -~  ° °  

In Section 6, a numerical algorithm is proposed for calculating the trajectories which lead to the 
reduced system (3.5) in the neighbourhood of the equilibrium positionx °. As a result, the corresponding 
programmed control for the initial system is obtained. This control (calculated in a finite time interval) 
can be used in combination with the quasi-optimal synthesis proposed in Section 5 which acts in an 
infinite interval. 

An estimate of the error in calculating the maximum value of functional (1.8), which arises when 
the proposed method of control is used, is derived in Section 7 and it is shown that this error can be 
made as small as desired by an appropriate choice of the size of the neighbourhood of the equilibrium 
position x °. 

In Section 8, the results of a comparison of the optimal curves, calculated for certain model parameters, 
with actual econometric data are presented. 

3. THE E X I S T E N C E  OF E Q U I L I B R I U M  
AND OF THE O P T I M A L  S O L U T I O N  

A s s e r t i o n  3.1. System (2.4), which describes the optimal dynamics, has a first integral 

z = ~ t l y + w 2 T = p  ° =(a  I + a  2 + l ) / p  (3.1) 

Proof. By virtue of system (2.4), differentiating function (2.6) we obtain a differential equation, the general solution 
of which is given by the formula 

z(t) = Cept + pO (3.2) 

The unique solution of the type (3.2) which satisfies transversality condition (2.5) is the constant function 
z = p0, that is, when the constant C in (3.2) is equal to zero and there is no exponential part. 

We now make the change of variables 

x I = y / T ,  x 2 = WlY, x3 = I / T  

and introduce the notation 

(3.3) 

Taking account of the first integral (3.1), we reduce initial system (2.4) to a third-order system with 
a block structure 

r° a2 
u ( x l ,  x 2 )  = ~ = y (xj +g)x 2 - p 0 x  I u ( x l , x 2 ) >  0 (3.4) 
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4 = AXI +&I ‘-y -(x, +g)x,u = 4(x,,x2) 

i2=px2+.yf2x2x;~-I-gx2u=F*(x,,x2) 

x3 = -x,xJu = F~(X,.X2,X~) 
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(3.5) 

In the subsequent analysis, we shall assume that the inequalities 

are satisfied. 

oays I,f,-p=v>o (3.6) 

The first condition of (3.6) denotes the moderate effect of the accumulated technology Ton the rate 
of growth of production j. The second condition of (3.6) indicates that the endogenic rate of growth 
of productionfi is strictly greater than the discount coefficient p. 

It can be shown (see [l]) that system (3.5) only has a stationary point x0 = (xy, xi, ~03) under these 
conditions. 

Assertion 3.2. Suppose conditions (3.6) are satisfied. Then, system (3.5) has stationary pointsx’which 
possess the following properties 

O<q<xp~r,, o=sr2cx;sz2 (3.7) 

cxp + &x2” - pox; > 0, x; = 0 

The parameters ri, z1 are the unique positive solutions of the corresponding equations 

g -= p$+‘Df2 peg= 022: 

ri+g &iy +_f2 ’ q+g A# +f2 

The parameters r2 and z2 are defined by the relations 

22 = p” 

If the parameters of the model y and f2 are sufficiently small, that is, 

(3.8) 

(3.9) 

(3.10) 

then the point x0 is unique. 

4. A QUALITATIVE ANALYSIS OF THE EQUILIBRIUM POSITION 

In order to establish the properties of the optimal control r” (2.2), we will investigate the stability of 
the equilibrium position x0. We will calculate the Jacobi matrix DF = {F,,j} (Fi j = aFj/axj, i,j = 1, 2, 
3) of the right-hand sides of system (3.5). For the partial derivatives Fi,j, we obtain the expressions 

F;,, = fi + (I - Y,f2x;y - xIu + a;‘gxz(x, + g)u2 

F;.2 = a;‘(x, +gJ2x,u2, F;,, = 0 

F2., = -y2f2x2xT’+r) - a;‘gx2(p0 - x2)u2 

F2s2 = p + y f2xLy + a;‘gp0x,u2, F2.3 = 0 

55.1 = -a;‘gx2x3u2, F3,2 = a;‘(~, +g)x,xju2, Fs.3 = -+u 

(4-I) 
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We will determine the signs of the coefficients Fi,j. 

Assertion 4.1. The coefficients Fi,i of the Jacobi matrix DF at the equilibrium position x0 are defined 
by the expressions (F$ = Fi,j(XO)) 

@I = -YhX, - -y gP”m4 +fd* <O 

*Y 
q+-I (x, +g12 

$2 = XI ux + f2 )* 
*Y 

02x1 

> 0, F;p, = 0 

45 = -y*fw, 
l u+y) _ gx*(PO - x2xM + f2>* < o 

a,&x, + id* 

F2:2 = P + yf2xt 
-y + wax, (Ax: + f2 J2 > 0 

a2xFYCq + g)* 
(4.2) 

F13 = FJT, = F;* = 0 

F$ = - xII-yw: + f2) < o 

XI +g 
Here,xi = xp(i = 1, 2, 3). 

Proof We express u from the first equation of system (3.5) when ii = 0 and substitute it into the expressions 
for the partial derivatives (4.1). Taking into account the first inequality of (3.7) and the second equality of (3.9), 
we obtain relations (4.2). 

Using Assertion 4.1, we will now formulate the following assertion concerning the eigenvalues of the 
Jacobi matrix DE 

Assertion 4.2. The Jacobi matrixDF has just one eigenvalue with a positive real part, and, consequently, 
the equilibrium position x0 is unstable. 

Proof Consider the second-order square matrix 

D= (4.3) 

x0, 
The partitioned structure of the matrix DF with the elements (4.2) indicates that, at the equilibrium position 
the eigenvalues of the matrix D are the eigenvalues of the matrix DF. 

In accordance with relations (4.2) the trace of the matrix D is positive. It follows from the corresponding inequality 
that just one eigenvalue of the matrix D, and, consequently, of the matrix DF, has a positive real part. 

We shall next assume that the discriminant DI of matrix D is negative 

DI-F°Fo -F°Fo <0 - I.1 2.2 1.2 2.1 (4.4) 

The constraints on the parameters of the system under consideration, subject to which inequality (4.4) 
is satisfied, have been found previously [l]. 

Assertion 4.3. Suppose inequality (4.4) is satisfied. Then, the Jacobi matrix DF has real eigenvalues: one 
of which is positive and two of which are negative. Consequently, the equilibrium position x0 is a saddle. 

Proof. Since the matrix DF has a partitioned structure and contains a negative diagonal element Fi,3, at least 
one of its eigenvalues 

~Lg = _ xI-yw +f*) 

XI +g 
(4.5) 
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is real and negative and the corresponding eigenvector h3 = (0, 0,l) is a unit vector. If inequality (4.4) is satisfied, 
one positive eigenvalue u1 and one negative eigenvalue l.12 of the matrix D exist. 

Assertion 4.4. The positive eigenvalue p1 satisfies the condition 

(4.6) 

and the negative eigenvalue p2 can be represented in the form 

CL2 = -(PI - P) < 0 (4.7) 

Assertion 4.5. The eigenvectors hi, h2, corresponding to the eigenvalues pl, ~2, have the positive 
components 

h, =~~b,a+p,,O). n, =(b2+(a+p,)2)K (4*8) 

1 
&, =-_(a+CL,,c,O), n2 =(c2 +(a+p,) 2% ) 

“2 
(4.9) 

Here, 

0 = FIJI, b = F1,29 c = IF2.11 (4.10) 

If the discriminant DI is negative, the angles of inclination 

‘pi = arctg$, i=l,2 
I 

of the eigenvectors are related to one another by the inequalities 

oa(PZ<(P,<x/2 

Proof. Substituting the positive eigenvalue u1 into the equation for finding the eigenvectors 

P+a -b h’ I =o 
C P-(~+a) h2 

(4.11) 

(4.12) 

(4.13) 

and considering its first row with the components of the eigenvector h, 

(p, +a)h: - Ml: = 0 

we obtain expression (4.8). 

(4.14) 

Similarly, substituting the negative eigenvalue ~2 (4.7) into Eq. (4.13) and considering its second row with the 
components of the eigenvector h2 

we obtain relation (4.9). 

c&l +(u2 -(p+a))h; =ch; -(cl, +a)g =0 (4.15) 

Noting that the discriminant DI is negative 

Dl = -a(p+a)+6c<O 

we obtain the chain of inequalities 

O>-a(p+o)+bc>_(p+a)2+bc>~CI, +a)2+bc 
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The last inequality ensures the relation 

Qcpl = 
Pl+a c ->-=tgcpz 

b PI +a 

from which the required relation for the angles Cpi(i = 1,2) (4.12) follows. 

We will now consider the system obtained by linearizing system (3.5) in the neighbourhood of the 
stationary point x0 = (xy, xs, 0) 

(4.17) 

Summing the properties of the Jacobi matrix, which are reflected in Assertions 4.1-4.5, the following 
properties of linear system (4.17) can be obtained. 

Assertion 4.6. Suppose conditions (3.6) (3.10) and (4.4) are satisfied. Then, the linear system (4.17) 
has the following properties. 

1. The equilibrium position x0 is unique and is a saddle. 
2. For any pair XT, x;, a unique value x; exists such that the initial point x* = (xi, x;, x;) lies in the 

plane generated by the eigenvectors h2 h3, which correspond to the negative eigenvalues u2, u3. The 
trajectoryx*(+) of linear system (4.17) which begins at the point x*, tends to the equilibrium point x0. 

3. The second component x2(.) of the other trajectories x(a), which begin at the points x = (xi, x2, 
x;), x2 f xi, tend to infinity at the rate of an exponential function with a growth exponent p1 > p 

x2(t) + m, t + 00 (4.18) 

Proof. Property 1 follows from Assertions 3.2 and 4.3. Property 2 follows from the fact that the first component 
hi of the eigenvector h2 and the third component hi of the eigenvector hs are strictly positive, and, consequently, 
the plane generated by the first and third componentsxr,xs can be orthogonally projected onto the plane generated 
by the eigenvectors hZ, h3. 

Property 3 follows from the instability of the equilibrium x0 and the property of the positive eigenvalue p, > p 
(4.6). 

Properties l-3 of linear system (4.17) are then used to investigate the optimal trajectories of non- 
linear system (3.5). According to the Grobman-Hartman theorem [12], non-linear system (3.5), as well 
as linear system (4.17), allow of trajectories which tend to the equilibriumx’. 

Assertion 4.7. Non-linear system (3.5) inherits the properties of the convergence of the solution to 
the equilibrium position, which are characteristic of linear system (4.17), that is, trajectoriesx’(.) exist 
which bring non-linear system (3.5) from the initial state x* to the equilibrium position x0 

lim x,?(t) = xp, xF(t,) = xy, i = 1,2,3 
I--+_ 

(4.19) 

Only such trajectories satisfy conditions (2.4) of the maximum principle and transversal@ conditions 
(2.5), and they are the optimal trajectories. 

We will now describe the behaviour of the optimal trajectory x0(.) in the neighbourhood of the 
equilibrium position x0 of non-linear system (3.5). The third component xi(.) = l/To tends to zero 
xi = 0 (3.7) at a negative rate (3.5) and the magnitude of the accumulated technology To = To(t) 
therefore increases monotonically to infinity. 

The first component xy(.) = ye/To tends to the positive equilibrium value x7 Z= 0 (3.7). Consequently, 
the volume of production also grows to infinity with the same asymptotic growth index as the technology 
p and, furthermore, its derivative (2.4) is strictly positive j’(t) > 0, t 2 to. 

If the quantityx; = y”(to)lTO(to) exceeds the equilibrium valuexy,xy c xi at the beginning of the control 
process, the optimal ratioxy(t) = y’(t)/T’(t) decreases from the initial value xi to the equilibrium value 
xy. This means that the relative rate of growth of the accumulated technology To is greater than the 
relative rate of growth of production y”. 
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5. QUASI-OPTIMAL SYNTHESIS IN 
THE NEIGHBOURHOOD OF THE POINT (x7, xi) 

It should be noted that thezroblem of finding the optimal trajectory x’(e), which brings system (3.5) 
to the equilibrium positionx , is quite difficult because of its instability. We will construct a quasi-optimal 
control in the form of a synthesis which brings the new coordinates xi(.), x3(-) of the system into the 
position (xy, xi). For this purpose, we will consider a linear variation of the second coordinate x2(+) in 
the first and third equations of (3.5) 

x2 =x,0+0(x, -$), 030 (5.1) 

‘-7 -$ =fi-q +_I+, -(x, + g)x,u’(x, ), x3 = -x,x$4*(x, ) (5.2) 

x&)=x;. x&)=x; 

The function 

uf(x,)=a2(d+k(6J)(x, -&+w(x, -xp,2>-’ 

is obtained when expression (5.1) is substituted into (3.4). The parameters d and k are defined by the 
relations 

d=gx;-(pO-x;)xp. k=k(o)=k,o+k, (5.3) 

k, =xp+g, k, =-(PO-X;) 

and the initial values xi, xi must satisfy the conditions 

xp~x;<xp+x,(w>, x;>o 

where 

(5.4) 

(5.5) 

Using the formulae for the new variables (3.3) we obtain the corresponding feedback control law 
r = r(y, 7) for initial system (1.1) (1.3) 

r* = ? = -x;$ = x,x;‘u*(xJ = yu*(ylT) (5.6) 

We will now formulate the conditions under which system (5.2) is stable. 

Assertion 5.1. Suppose the coefficient o in (5.1) satisfies the conditions 

(5.7) 

Then, the quasi-optimal synthesis r* (5.6) transfers the trajectoriesx’(.) of system (5.2) from the initial 
state xi, x; (5.4) into the equilibrium position ~7, xy. 

Proof. The convergence ofxi(.) to the equilibrium value xy follows from the property of asymptotic 
stability: the corresponding total derivative must have a negative sign 

4 (x0) -<o 
&I 

(5.8) 
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Taking account of relations (4.2) for the partial derivatives Fy,i and the linear dependence (5.1) of 
the coordinates xi (i = 1, 2) we obtain 

dq(xo) _ _y XI(fi4 +h)2 
& 

F,Y, + +I = -@2x, - 
a2x?(xI +g) 

2 (gp" 4x1 +d20) (5.9) 

It is obvious that, in the case of conditions (5.7) dFl/akl c 0, which guarantees the required asymptotic 
stability. 

The relations 

F;, = 0, F& < 0 (5.10) 

are the conditions of asymptotic stability for the third equation of system (3.5) and guarantee that the 
third component x;(a) vanishes. 

We will now consider the natural situation when the tangent of the angle of inclination w. of the 
eigenvector hz (4.9), corresponding to the negative eigenvalue u2 (4.7), of the Jacobi matrix D (4.3) is 
selected as the parameter o in the control law (5.6). 

a+CL2 a+~--PI C 
too =-= =- 

b b a+& 

(5.11) 

Assertion 5.2. The tangent of the angle of inclination w. (5.11) of the eigenvector h2 (4.9), which 
corresponds to the negative eigenvalue j_~z (4.7) satisfies the relations 

OS 00 <w, (5.12) 

and, consequently, the quasi-optimal synthesis r* = r*(oo) (5.6) with the coefficient w. transfers the 
trajectoriesx’(.) from the initial state xi, xi into the equilibrium state xy, xy. 

Proof Taking relation (4.6) into account, we obtain the following sequence of inequalities 

a a PI-P_a+P-Pl =“o=L>O -- 
o’=b’b- b 6 a+Pt 

Finally, we note certain properties of the quasi-optimal trajectories x*(.) which bring the system 
to the equilibrium position x0. A more complete investigation of the behaviour of the system under 
consideration using the quasi-optimal synthesis r* (5.6) is given in [l]. 

Remarks. 1. Under quasi-optimal conditions the third component x5(.) = l/T* tends to zero at a negative rate 
(5.10). It follows from this that the amount of accumulated technology T’ increases monotonically to infinity at 
the rate of an exponential function with an exponent 1 u3 1 > fi - p > 0 (4.5). 

The first componentx;(.) = y’/T’ tends to a positive equilibrium valuexy > 0. Hence, the volume of production 
y’ also tends to infinity with the same asymptotic growth index as the technology T’. 

If, at the start of the control process, the ratiox; of productiony’ to technology T’ exceeds the equilibrium value 
xy, that is 

(5.13) 

then the quasi-optimal ratioxi(.) = y*/T' decreases from the initial valuexi to the equilibrium valuexy. This means 
that, in this case, the relative rate of growth of the accumulated technology T’ is greater than the relative rate of 
growth in production y’. 

2. In expression (5.6), the function u*(y/T) tends to a positive constant value when t + 00. Hence, the amount 
of investment under quasi-optimal conditions r’ (5.6) also tends to infinity with the same asymptotic growth index 
as the production y’ and the technology T’. 
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6. A NUMERICAL ALGORITHM FOR FINDING 
QUASI-OPTIMAL CONTROL 

We will not present a constructive numerical procedure for finding the quasi-optimal control which 
approaches the optimal control with any accuracy specified in advance. The corresponding error in 
calculating the functional is presented in Section 7. The process of finding the quasi-optimal control 
consists of two basic stages. The trajectory of reduced system (3.9, which falls into the neighbourhood 
of the equilibrium position x0 (the trajectory is calculated over a finite time interval, is found during 
the first stage. The corresponding control and trajectory for the initial system are determined in 
accordance with (3.3). In the second stase? the synthesis of the control (5.6) (see Section 5) which 
transfers system (3.5) to the position xy, x3 1s used. 

We will assume that all the parameters of the model, the initial instant of time to and the corresponding 
initial values of production y(fo) and technology T(to) are lixed and, moreover, a sufficiently small 
parameter E, which determines the accuracy of the algorithm, is specified. Then, the coordinatesxy, xi 
of the equilibrium position of system (3.5) are found from the system of equalities F,(xt, x2) = 0, 
F2(Xl,X2) = 0. 

We now consider the c-neighbourhood of the point (xy, xi) in the plane (x1,x2) (Fig. 1). The behaviour 
of the variables x1, x2 will henceforth be investigated separately from x3 since system (3.5) has a block 
structure. In the a-neighbourhood, we fix a certain point (xi, x;), lying in a ray beginning at (xy, xi) 
and having an angle of inclination with a tangent o which satisfies inequality (5.7). In particular, 
this ray can be parallel to the eigenvector which corresponds to the negative eigenvalue of the Jacobi 
matrix D. 

We will now describe an algorithm for calculating the trajectory of system (3.5) which, at the instant 
of time t* > to, passes through a point x* = (xi, x;, xi), where the values of t’, xi are not lixed and will 
be determined later. This procedure can be developed in several steps. Initially, we consider the values 
xi = x7,x2 = x; as the initial values and integrate the system of the first two equations in (3.5) in reverse 
time until the equalityxi(t) = xl(to) = y(to)l~(to) t urns out to be satisfied; this condition determines the 
time interval over which the calculation is carried out. As a result, we find the functionsxi(t) andx2(t), 
(to c t c t’). We then substitutex,(t) andx2(t) into the third equation in (3.5) and integrate it in direct 
time with the initial conditionx3(t0) = l/T(t,). As a result, we find the functionx3(t) and the final value 
x; = xs(t*). In accordance with (3.3) we also obtain the values of the technology T(t) = 1/x3(t), the 
productiony(t) = x1(t)/x3(t) and the investment r = T. Figure 1 illustrates the operation of the algorithm. 
The arrow directed to the right symbolizes integration in reverse time while the arrow directed to the 
left symbolizes integration in direct time. 

We will now show that the coordinate x1 always attains its initial value xi(tO) during integration in 
reverse time if the parameters of the system satisfy the following constraints 

Conditions (6.1) are sufficient for the successful operation of the proposed algorithm. 
According to Eqs (3.5), we have the following relations which will be used below 

(6.1) 

Fig. 1 
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-2 .2 

i2 =x2+x, & x2 

x2 ( 1 x2 

= : - y2f2x2$7+‘),, -x,gi+- 

x2 

x2 g 4 -=--+F(x,,x2) 
x2 XI +g XI 

(6.2) 

(6.3) 

(6.4) 

F(Xl9.4 = - 
g(A +f2~~7)+p+v2x;7 1 -- 

XI +g x2 

We will initially make the assumption (it will be proved below) that, when calculating the quasi-optimal 
trajectory, conditionsi, > 0 andX2(t) > 0 are satisfied at all instants of time t, to S t s t’. It is then 
obvious that iI < 0, i2(t) > 0 and that the coordinate x1 attains its initial value xl&). As a result, the 
numerical algorithm which is used finds the quasi-optimal trajectory. 

We obtain an expression for the derivative of the function u with respect to time t 

h=- $(x2 -PO)4 +(x, ++2] 

Using the conditionx2 -p” > -&xi, which follows from (3.4), and equality (6.4), we obtain an estimate 
which is satisfied when calculating a trajectory which falls within the neighbourhood of the equilibrium 
position, 

u2 x, 
lie-- -gx, 

a2 [ 
y+(x, +&2 = 1 

= _ U2(T + t+2 x2 

a2 

[z--u]~-~2(yJx2 F(x,,x2) 
(6.6) 

We will now show that the function F(xt, x2), introduced earlier in (6.4), is positive. We have 

q+x2) = g*62x;(‘+7) + g(fi + hK7) -o+Y) = 

ax, XI +g (XI +gj2 
- Y2@, 

gfi + f2x;(‘+7) 
= (-Y2x:+gx,(1+Y-2y2)+g2y(l-y)) 

(XI + d2 
3 

Hence, 

p= a~(x,~~2) . 
ax, 

XI + 
a~(+~,4 <o 

3x2 
2 

Moreover, the equality F(xy,x$ = 0 is satisfied by virtue of (6.4). Hence, in the operation of the algorithm 
F(x,, x2) > 0 and, according to (6.6), ti < 0, and it follows from (6.3) that iI > 0. 

We will now prove that i,(t) > 0. Using the inequality 
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SL>-- g 4 
x2 XI +g XI 

which follows from (6.4) when F(xi, x2) > 0, and expression (6.3), we obtain 

x; 
_i$>-+ 

x2 ( 

-&yzf2x2x;' $x2*ti>o 

1 

Here, we have used the fact that, in the case of the previously introduced constraints (6.1) the expression 
in the brackets in (6.7) is negative 

-&y2f2x2x;Y =x;y 
t 
$-g2f2x2)< 

< x;Y gx, to 1 0 
41-Y) -r'hx:]=x~~[~(~)-~2f2x~]<o 

Tln& the guaranteed operation of the numerical algorithm, subject to constraints (6.1), has been 
proved and it has been shown that the inequalities 

i,(t) > 0, x,(t) < 0. .&(t) > 0, x*(t) < 0, I;(t) < 0 

hold when to s t c t*. 

7. AN ESTIMATE OF THE ACCURACY OF THE ALGORITHM 

In this Section, an analytical estimate is obtained of the error in calculating the maximum value 
of the utility function, which arises as a result of the use of the proposed quasi-optimal 
control. 

We substitute the expression for the optimal control law (2.2) into functional (1.8). Then, from (3.3) 
and (2.6), we obtain 

u,o = je-M-)[(l + u2) In xi + a, In u]dl + rl 
'0 

(7.1) 

Taking account of the fact that 

lnxj (In x3)’ 
EieP(r-to) = ;i! (eP(,_,o))’ = ,‘$ 

-x,Ue-P(‘-‘O) = o 
p 

we rewrite the last term in (7.1) in the form 

r\ = pOe-P(‘-‘o)ln x3l; _ pO je-P(+lO) $dt = 
10 x3 

= -~“Inx3(ro)+~0 jX,Ue-P(r-%ft 
‘0 

It is now obvious that the error in calculating the maximum value of functional (7.1) is exclusively 
associated with the accuracy in determining the functions xi(t), x2(t) in the time intervals (to, t’), 
(t’, -). Note that, in formula (7.1), the upper limit of integration can be put equal to t’ and the value 
of the resulting integral can then be found numerically. The additional quantity 
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U,. =~e-P(r-ro)[(l+a2)lnx, +alInu+pOx,u]df 
I* 

(7.2) 

which should make a contribution to integral (7.1) but has been dropped on changing the limit of 
integration, can be estimated. The question arises: how is the parameter E, which specifies the dimensions 
of the neighbourhood of the equilibrium position, to be chosen if the permissible error At,, in calculating 
the functional U10 is specified? 

We next consider two additional problems. 

Problem 1. It is required to determine the error in calculating the functions xl(t), x2(t) in a time interval 
(to, t’) and the error in calculating functional (7.1) associated with this. 

Solution. We initially estimate the duration to - t* of the process of integration in reverse time. Using 
relations (3.5), (6.2) and (6.6), we obtain 

x, > - ( v*x;y +x,+ -x,(x,+g)ic=G(x,.x*)>G(x;,x;)= 

ac($. x20) aG(xpJ;) = 
ax h(t’)+ ax hz(f)=C& 

I 2 

(7.3) 

The notation 

C(X,J2) = -(yf# ++)(A +f$ --(XI +&)+ 

+xi 
u2(x, + gJ2x2 

a2 
qxlJ2) 

has been introduced here. 
Hence, we have the limit 

(7.4) 

By virtue of the theorem on the continuous dependence of the solution on the initial data [13], 
integration of the first two equations of reduced system (3.5) in reverse time leads to an error of the 
order of E’h in determining xl(t), x2(t) in the interval to < t < t’ which, in turn, gives an error of 
Cit+( 1 - e- p(fo-“)) in calculating functional (7.1) (the immediate value of the constant Ci is determined 
by the parameters of the system). 

Problem 2. Suppose that, for any t > t’ > to, the functions x1(t), x2(t) can be represented in the form 

x,(t)=xp+6x,(t), x,(t)=x;+liQ(t) (7.5) 

Here,xy,x! specify the equilibrium position of system (3.5) and the quantities &x,(t), &z(t) are sufficiently 
small so that 

lim x,(t) = xp, lim x,(t) = xi 
t-b- ,+- 

(these conditions are satisfied ifx,(t) andx2(t) change in accordance with the optimal law or the quasi- 
optimal law (5.6)). It is required to estimate the value of functional (7.2). 

Solution. We assume that the constraints 

where Al, A2 are certain constants, are satisfied for any t > t’. We substitute expressions (7.5) into (7.2) 
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Here 

u,. = 
e-P(r=ro) 

P [( ) I+a2 Inxp+azlnu(xp,x,O)+poxPu x:,x; 
( )I +A (7.7) 

A = ie-P(f-fO) 
1’ 

[p”u~‘x;u*(g6x, -(xf +g)a.x,)+ 

u((x; -P”px, +(xp+g)Gx,p+m (7.8) 

Using inequalities (7.6) we obtain 

According to relation (7.9) the absolute value of A becomes infinitesimal when E + 0. Hence, the 
following result has been obtained: if E + 0, then, in the case of the quasi-optimal control law (5.6), 
the value of the functional U,* tends to a constant. determined bv the first term of expression (7.7). 

Summing the estimates of the errors obtained in the solution of Problems 1 and 
following transcendental equation for E 

2, we obtain’the 

where ArO is the required accuracy in calculating the maximum value of utility function (1.8). 

8. ECONOMETRIC IDENTIFICATION 

The mathematical model being considered was tested on the data for the Japanese processing industry 
for the period from 1960 to 1992. According to material from the Tokyo Institute of Technology (see 
[lo]) the Japanese economy developed under difficult conditions in the 1960’s: rapid economic growth 
was accompanied by a labour shortage and an energy crisis. The process of economic development was 
irregular. At the beginning of the 1970’s, strenuous efforts were made to stabilize the process and to 
control it. As a result, the economic development acquired a stable and controlled character. The policy 
of investment in the development of science and new technologies was one of the basic control levers. 

The test results are presented below. Variation of the model parameters enables one to obtain clusters 
of theoretically optimal trajectories. By comparing these clusters of trajectories with the empirical data, 
it is possible to draw conclusions regarding the effectiveness of the control of the economy and to estimate 
the optimal@ of the investment for different economic development scenarios. The clusters which have 
been synthesized can also be used to determine the sensitivity of the optimal trajectories to variations 
in the various parameters of the model or combinations of them. Such a sensitivity analysis is particularly 
important when the process of economic development being considered is optimal or close to optimal. 
In this situation, the parameters, to a change in which the optimal trajectories are most sensitive, can 
be identified by experts. Control of these vital parameters is an important problem in macroeconomic 
management. 

Clusters of synthesized optimal trajectories, obtained by varying the elasticity coefficient within the 
range 0.90 c a c 0.94, are shown in Fig. 2. For the time interval covering the years from 1970 to 1992, 
the clusters of optimal trajectories are compared with the empirical data for four main indices: y(t) is 
the production (trillions of yen), T(t) is the technology (trillions of yen), y(t)lT(t) is the productivity of 
technology, r(t - m)/y is the intensity of investment in the development of technology and t is the time 
(years). The optimal trajectory which is closest to the actual econometric data (denoted by the dashed 
curve) corresponds to the following set of model parameters: y = 1.0, CL = 0.92, p = 0.035 ((year)-‘), 
l3i = 0.5, p2 = OS,fi = 0.042 ((year)-‘,fz = 0.015 ((year)-‘), g = 0.6 and the initial values t0 = 1970, 
y(ta) = 1.504, 7-Q,) = 0.1034. 
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Fig. 2 

Experiments showed that, in certain parameter ranges, the optimal trajectories are in good agreement 
with the econometric data for the Japanese processing industry. This fact confirms the supposition that, 
during the period from 1970 to 1992, the development of the Japanese economy was close to optimal 
and is indicative of the adequacy of the mathematical model. 

This research was supported financially by the Russian Foundation for Basic Research (99-01-00258, 
00-1596013,99-Ol-00146,00-15-96057,01-01-06308) and the Fujitsu Research Institute (00-117). 

1 

2. 
3. 

4. 
5. 

6. 

7. 

8. 
9. 

10. 

11. 

12. 
13. 

REFERENCES 

TARASYEV, A. M. and WATANABE, C., Optimal control of R and D investment in a techno-metabolic system. Interim 
Report IR-99-001. Intern. Inst. Appl. Syst. Analysis, Laxenburg, Austria, 1999. 
ARROW, K. J., Collected Papers, Vol. 5, Production and Capital. Belknap Press, Cambridge, Harvard Univ. Press, 1985. 
ARROW, K. J. and KURZ, M., Public Investment, the Rare of Return and Optimal Fiscal Policy. Baltimore, Johns Hopkins, 
1970. 
GROSSMAN, G. M. and HELPMAN, E., Innovation and Growth in the Global Economy. MIT Press, Cambridge, MA, 1993. 
LEE, C. S. and LEITMANN, G., On one aspect of science policy based on an uncertain model. Annals of Operut. Res., 1999, 
88, 199-214. 
BORISOV, V F., HUTSCHENREITER, G. and KRYAZHIMSKII, A. V, Asymptotic growth rates in knowledge-exchanging 
economies. Annuls of Operat. Res., 1999,89, 61-73. 
WATANABE, C., Trends in the substitution of production factors to technology-empirical analysis of the inducing impact 
of the energy crisis on Japanese industrial technology. Res. Policy, 1992,21,481-505. 
INTRILIGATOR, M., Mathematical Optimization and Economic Theory. Prentice-Hall, New York, 1971. 
GRILICHES, Z., R and D. Parents, and Productivity. University of Chicago Press, Chicago, 1987. 
WATANABE, C., The interaction between technology and economy: national strategies for constrained economic 
environments. The case of Japan 1955-1922. Interim Report WP-95-16. Intern. Inst. Appl. Syst. Analysis, Laxenburg, Austria, 
1995. 
PONTRYAGIN, L. S., BOLTYANSKJI, V G., GAMKRELIDZE, R. V. and MISHCHENKO, Ye. F., TheMathematical Theory 
of Optimal Processes. Nauka, Moscow, 1983. 
HARTMAN, Ph., Ordinary Differential Equations. Wiley, New York, 1964. 
PONTRYAGIN, L. S., Ordinary Differential Equations. Nauka, Moscow, 1974. 

Tmnslated by E.L.S. 


